Selective eicosanoid-generating capacity of cytoplasmic phospholipase A2 in Pseudomonas aeruginosa-infected epithelial cells.
نویسندگان
چکیده
Airway neutrophil infiltration is a pathological hallmark observed in multiple lung diseases including pneumonia and cystic fibrosis. Bacterial pathogens such as Pseudomonas aeruginosa instigate neutrophil recruitment to the air space. Excessive accumulation of neutrophils in the lung often contributes to tissue destruction. Previous studies have unveiled hepoxilin A(3) as the key molecular signal driving neutrophils across epithelial barriers. The eicosanoid hepoxilin A(3) is a potent neutrophil chemoattractant produced by epithelial cells in response to infection with P. aeruginosa. The enzyme phospholipase A(2) liberates arachidonic acid from membrane phospholipids, the rate-limiting step in the synthesis of all eicosanoids, including hepoxilin A(3). Once generated, aracidonic acid is acted upon by multiple cyclooxygenases and lipoxygenases producing an array of functionally diverse eicosanoids. Although there are numerous phospholipase A(2) isoforms capable of generating arachidonic acid, the isoform most often associated with eicosanoid generation is cytoplasmic phospholipase A(2)α. In the current study, we observed that the cytoplasmic phospholipase A(2)α isoform is required for mediating P. aeruginosa-induced production of certain eicosanoids such as prostaglandin E(2). However, we found that neutrophil transepithelial migration induced by P. aeruginosa does not require cytoplasmic phospholipase A(2)α. Furthermore, P. aeruginosa-induced hepoxilin A(3) production persists despite cytoplasmic phospholipase A(2)α suppression and generation of the 12-lipoxygenase metabolite 12-HETE is actually enhanced in this context. These results suggest that alterative phospholipase A(2) isoforms are utilized to synthesize 12-lipoxygenase metabolites. The therapeutic implications of these findings are significant when considering anti-inflammatory therapies based on targeting eicosanoid synthesis pathways.
منابع مشابه
Phospholipase A2 functions in Pseudomonas aeruginosa-induced apoptosis.
Pseudomonas aeruginosa, a gram-negative, facultative pathogen, causes severe and often even lethal infections in immunocompromised patients, as well as cystic fibrosis patients. We show here that a variety of P. aeruginosa strains activate phospholipase A2 (PLA2), cultured epithelial cells, and fibroblasts, resulting in increased intracellular and extracellular arachidonic acid release. The use...
متن کاملExoU-induced procoagulant activity in Pseudomonas aeruginosa-infected airway cells.
The present study addressed the question whether ExoU, a Pseudomonas aeruginosa toxin with phospholipase A2 (PLA2) activity, may induce airway epithelial cells to overexpress tissue factor (TF) and exhibit a procoagulant phenotype. Cells from the human bronchial epithelial BEAS-2B line were infected with an ExoU-producing P. aeruginosa strain, pre-treated or not with the cytosolic PLA2 inhibito...
متن کاملInvolvement of phospholipase A2 in Pseudomonas aeruginosa-mediated PMN transepithelial migration.
Inflammation resulting from bacterial infection of the respiratory mucosal surface during pneumonia and cystic fibrosis contributes to pathology. A major consequence of the inflammatory response is recruitment of polymorphonuclear cells (PMNs) to the infected site. To reach the airway, PMNs must travel through several cellular and extracellular barriers, via the actions of multiple cytokines, c...
متن کاملPseudomonas aeruginosa ExoU augments neutrophil transepithelial migration
Excessive neutrophil infiltration of the lungs is a common contributor to immune-related pathology in many pulmonary disease states. In response to pathogenic infection, airway epithelial cells produce hepoxilin A3 (HXA3), initiating neutrophil transepithelial migration. Migrated neutrophils amplify this recruitment by producing a secondary gradient of leukotriene B4 (LTB4). We sought to determ...
متن کاملAssociation between Pseudomonas aeruginosa type III secretion, antibiotic resistance, and clinical outcome: a review
Pseudomonas aeruginosa uses a complex type III secretion system to inject the toxins ExoS, ExoT, ExoU, and ExoY into the cytosol of target eukaryotic cells. This system is regulated by the exoenzyme S regulon and includes the transcriptional activator ExsA. Of the four toxins, ExoU is characterized as the major virulence factor responsible for alveolar epithelial injury in patients with P. aeru...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- American journal of physiology. Lung cellular and molecular physiology
دوره 300 2 شماره
صفحات -
تاریخ انتشار 2011